A localised co-rotating auroral absorption event observed near noon using imaging riometer and EISCAT

نویسندگان

  • P. N. Collis
  • J. K. Hargreaves
  • G. P. White
چکیده

An isolated region of energetic electron precipitation observed near local noon in the auroral zone has been investigated using imaging riometer (IRIS) and incoherent-scatter radar (EISCAT) techniques. IRIS revealed that the absorption event was essentially co-rotating with the Earth for about 2 h. The spatial and temporal variations in D-region electron density seen by EISCAT were able to be interpreted within a proper context when compared with the IRIS data. EISCAT detected significant increases in electron density at altitudes as low as 65 km as the event drifted through the radar beam. The altitude distribution of incremental radio absorption revealed that more than half of the absorption occurred below 75 km, with a maximum of 67 km. The energy spectrum of the precipitating electrons was highly uniform throughout the event, and could be described analytically by the sum of three exponential distributions with characteristic energies of 6, 70 and 250 keV. A profile of effective recombination coefficient that resulted in self-consistent agreement between observed electron desities and those inferred from an inversion procedure has been deduced. The observations suggest a co-rotating magnetospheric source region on closed dayside field lines. However, a mechanism is required that can sustain such hard precipitation for the relatively long duration of the event.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D- and E-region effects in the auroral zone during a moderately active 24-h period in July 2005

The effects of energetic electron precipitation into the auroral region at a time of enhanced solar wind have been investigated during a continuous period of 24 h, using the European Incoherent Scatter (EISCAT) radar, an imaging riometer, and particle measurements on an orbiting satellite. The relative effects in the E region (120 km) and D region (90 km) are found to vary during the day, consi...

متن کامل

On the relationship between auroral absorption, electrojet currents and plasma convection

In this study, the relationship between auroral absorption, electrojet currents, and ionospheric plasma convection velocity is investigated using a series of new methods where temporal correlations are calculated and analysed for different events and MLT sectors. We employ cosmic noise absorption (CNA) observations obtained by the Imaging Riometer for Ionospheric Studies (IRIS) system in Kilpis...

متن کامل

Evidence for solar-production as a source of polar-cap plasma

The focus of the study is a region of enhanced ionospheric densities observed by the EISCAT Svalbard radar in the polar F-region near local magnetic noon under conditions of IMF Bz<0. Multi-instrument observations, using optical, spacecraft and radar instrumentation, together with radio tomographic imaging, have been used to identify the source of the enhancement and establish the background io...

متن کامل

High-resolution maps of the characteristic energy of precipitating auroral particles

For the first time we produce high-resolution maps of the characteristic energy of precipitating electrons from ground-based instrumentation in the auroral zone over northern Scandinavia. This is done by combining intensity-calibrated optical data at 557.7 nm from the Digital All-Sky Imager (DASI) with auroral absorption images from the Imaging Riometer for Ionospheric Studies (IRIS). Energy ma...

متن کامل

On the fine structure of medium energy electron fluxes in the auroral zone and related effects in the ionospheric D-region

This study is based on measurements of trapped and precipitated electrons of energy >30 keV and >100 keV observed by polar orbiting environmental satellites during overpasses of the imaging riometer at Kilpisjärvi, Finland. The satellites are in sun-synchronous orbits of about 850 km altitude, recording the electron fluxes at 2-s time resolution. The riometer measures the radiowave absorption a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996